2,686 research outputs found

    Cytokine response to typical field sports practices in adolescent athletes

    Get PDF
    The present study compares previous reports on the effect of “real-life” typical field individual (i.e. cross country running and wrestling – representing combat versus non-combat sports) and team sports (i.e. volleyball and water-polo – representing water and land team sports) training on pro (IL-6) and anti (IL-1 receptor antagonist – IL-1ra) inflammatory mediators in male and female late pubertal athletes. An increase in IL-6 was found following each of the training sessions. In contrast, a significant increase in IL-1ra was found only following the cross-country, wrestling and water-polo practices and not following the volleyball practices in both genders. There was no difference in the inflammatory response between individual and team sports practices. The inflammatory response to the typical practices was correlated with the practice-associated lactate change. The greatest increase in IL-6 and IL-1ra occurred following contact sport practices, and was greater following land (wrestling) compared to the water (water-polo) practice suggesting that this increase may reflect muscle tissue damage and not necessarily training intensity. Further research is needed to better understand the influence of “real-life” typical training on exercise training adaptations of adolescent athletes

    Enjoyment of exercise moderates the impact of a school-based physical activity intervention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A school-based physical activity intervention designed to encourage adolescent girls to be more active was more effective for some participants than for others. We examined whether baseline enjoyment of exercise moderated response to the intervention.</p> <p>Methods</p> <p>Adolescent girls with a low level of baseline activity who participated in a controlled trial of an intervention to promote increased physical activity participation (<it>n </it>= 122) self-reported their enjoyment of exercise and physical activity participation at baseline, mid-way through the intervention, and at the end of the 9-month intervention period. At all three time points, participants also underwent assessments of cardiovascular fitness (VO<sub>2</sub>peak) and body composition (percent body fat). Repeated measures analysis of variance examined the relationship of baseline enjoyment to change in physical activity, cardiovascular fitness, body composition and enjoyment of exercise.</p> <p>Results</p> <p>A significant three-way interaction between time, baseline enjoyment, and group assignment (p < .01) showed that baseline enjoyment moderated the effect of the intervention on vigorous activity. Within the intervention group, girls with low enjoyment of exercise at baseline increased vigorous activity from pre-to post-intervention, and girls with high baseline enjoyment of exercise showed no pre-post change in vigorous activity. No differences emerged in the comparison group between low-and high-enjoyment girls.</p> <p>Conclusion</p> <p>Adolescent girls responded differently to a physical activity promotion intervention depending on their baseline levels of exercise enjoyment. Girls with low enjoyment of exercise may benefit most from a physical-education based intervention to increase physical activity that targets identified barriers to physical activity among low-active adolescent girls.</p

    Accelerated Calvarial Healing in Mice Lacking Toll-Like Receptor 4

    Get PDF
    The bone and immune systems are closely interconnected. The immediate inflammatory response after fracture is known to trigger a healing cascade which plays an important role in bone repair. Toll-like receptor 4 (TLR4) is a member of a highly conserved receptor family and is a critical activator of the innate immune response after tissue injury. TLR4 signaling has been shown to regulate the systemic inflammatory response induced by exposed bone components during long-bone fracture. Here we tested the hypothesis that TLR4 activation affects the healing of calvarial defects. A 1.8 mm diameter calvarial defect was created in wild-type (WT) and TLR4 knockout (TLR4-/-) mice. Bone healing was tested using radiographic, histologic and gene expression analyses. Radiographic and histomorphometric analyses revealed that calvarial healing was accelerated in TLR4-/- mice. More bone was observed in TLR4-/- mice compared to WT mice at postoperative days 7 and 14, although comparable healing was achieved in both groups by day 21. Bone remodeling was detected in both groups on postoperative day 28. In TLR4-/- mice compared to WT mice, gene expression analysis revealed that higher expression levels of IL-1β, IL-6, TNF-α,TGF-β1, TGF-β3, PDGF and RANKL and lower expression level of RANK were detected at earlier time points (≤ postoperative 4 days); while higher expression levels of IL-1β and lower expression levels of VEGF, RANK, RANKL and OPG were detected at late time points (> postoperative 4 days). This study provides evidence of accelerated bone healing in TLR4-/- mice with earlier and higher expression of inflammatory cytokines and with increased osteoclastic activity. Further work is required to determine if this is due to inflammation driven by TLR4 activation. © 2012 Wang et al

    Respiration rate and volume measurements using wearable strain sensors.

    Get PDF
    Current methods for continuous respiration monitoring such as respiratory inductive or optoelectronic plethysmography are limited to clinical or research settings; most wearable systems reported only measures respiration rate. Here we introduce a wearable sensor capable of simultaneously measuring both respiration rate and volume with high fidelity. Our disposable respiration sensor with a Band-Aid© like formfactor can measure both respiration rate and volume by simply measuring the local strain of the ribcage and abdomen during breathing. We demonstrate that both metrics are highly correlated to measurements from a medical grade continuous spirometer on participants at rest. Additionally, we also show that the system is capable of detecting respiration under various ambulatory conditions. Because these low-powered piezo-resistive sensors can be integrated with wireless Bluetooth units, they can be useful in monitoring patients with chronic respiratory diseases in everyday settings

    Fetal Programming of Body Composition, Obesity, and Metabolic Function: The Role of Intrauterine Stress and Stress Biology

    Get PDF
    Epidemiological, clinical, physiological, cellular, and molecular evidence suggests that the origins of obesity and metabolic dysfunction can be traced back to intrauterine life and supports an important role for maternal nutrition prior to and during gestation in fetal programming. The elucidation of underlying mechanisms is an area of interest and intense investigation. In this perspectives paper we propose that in addition to maternal nutrition-related processes it may be important to concurrently consider the potential role of intrauterine stress and stress biology. We frame our arguments in the larger context of an evolutionary-developmental perspective that supports roles for both nutrition and stress as key environmental conditions driving natural selection and developmental plasticity. We suggest that intrauterine stress exposure may interact with the nutritional milieu, and that stress biology may represent an underlying mechanism mediating the effects of diverse intrauterine perturbations, including but not limited to maternal nutritional insults (undernutrition and overnutrition), on brain and peripheral targets of programming of body composition, energy balance homeostasis, and metabolic function. We discuss putative maternal-placental-fetal endocrine and immune/inflammatory candidate mechanisms that may underlie the long-term effects of intrauterine stress. We conclude with a commentary of the implications for future research and clinical practice

    A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    Get PDF
    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cross-section calculation can be achieved with reasonably small look-up table size by using the examples of jet production and electro-weak boson (Z, W) production in proton-proton collisions at a center-of-mass energy of 14 TeV at the LHC. The use of this technique in PDF fitting is demonstrated in a PDF-fit to HERA data and simulated LHC jet cross-sections as well as in a study of the jet cross-section uncertainties at various centre-of-mass energies

    Acetaldehyde and hexanaldehyde from cultured white cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noninvasive detection of innate immune function such as the accumulation of neutrophils remains a challenge in many areas of clinical medicine. We hypothesized that granulocytes could generate volatile organic compounds.</p> <p>Methods</p> <p>To begin to test this, we developed a bioreactor and analytical GC-MS system to accurately identify and quantify gases in trace concentrations (parts per billion) emitted solely from cell/media culture. A human promyelocytic leukemia cell line, HL60, frequently used to assess neutrophil function, was grown in serum-free medium.</p> <p>Results</p> <p>HL60 cells released acetaldehyde and hexanaldehyde in a time-dependent manner. The mean ± SD concentration of acetaldehyde in the headspace above the cultured cells following 4-, 24- and 48-h incubation was 157 ± 13 ppbv, 490 ± 99 ppbv, 698 ± 87 ppbv. For hexanaldehyde these values were 1 ± 0.3 ppbv, 8 ± 2 ppbv, and 11 ± 2 ppbv. In addition, our experimental system permitted us to identify confounding trace gas contaminants such as styrene.</p> <p>Conclusion</p> <p>This study demonstrates that human immune cells known to mimic the function of innate immune cells, like neutrophils, produce volatile gases that can be measured <it>in vitro </it>in trace amounts.</p

    Four Months of a School-Based Exercise Program Improved Aerobic Fitness and Clinical Outcomes in a Low-SES Population of Normal Weight and Overweight/Obese Children With Asthma

    Get PDF
    Introduction: Fitness can improve asthma management. However, children from disadvantaged and minority communities generally engage less in physical activity, and have increased obesity and asthma disease burden. The goal of this pilot study is to evaluate (1) the feasibility of an exercise intervention program in a school-based setting (attendance and fitness improvement) and (2) the effect of the intervention on fitness, asthma, and clinical outcomes in normal weight and overweight/obese children with asthma from low-SES population.Materials and Methods: Nineteen children, ages 6–13 years, from two elementary schools in Santa Ana, CA, a population with high percentage of Hispanic and low socioeconomic status, participated. Training sessions occurred at the schools during afterschool hours (3 sessions weekly × 4 months) and included mainly aerobic age-appropriate activities/games and a small component of muscle strength. Before and after the intervention, evaluations included pulmonary function testing, cardiopulmonary exercise testing (peak V˙O2), assessments of habitual physical activity, body composition (DXA), asthma questionnaires, and blood (cardiometabolic risk factors).Results: Seventeen of 19 participants completed the study. Adherence to the program was 85%. Based on BMI %ile, 11 of the participants were overweight/obese and 8 were normal weight. Ten participants had persistent asthma and 9 children had intermittent asthma. Training was effective as peak V˙O2 improved significantly (8.1%, SD ± 10.1). There was no significant change in BMI %ile but a significant improvement in lean body mass (1%, SD ± 2.0) and decrease in body fat (1.9%, SD ± 4.6). Asthma quality of life outcomes improved following the intervention in symptoms, emotional function, and overall. There was no change in asthma control or pulmonary function. Five of 10 participants with persistent asthma decreased their maintenance medications. Lipid levels did not change except HDL levels increased (46.1 ± 8.4 mg/dL to 49.5 ± 10.4 mg/dL, p = 0.04).Discussion: A school-based exercise intervention program designed specifically for children with asthma for a predominantly economically disadvantaged and minority population was feasible with good adherence to the program and substantial engagement from the schools, families and participants. The exercise intervention was effective with improvement in aerobic fitness, body composition, asthma quality of life, and lipid outcomes, setting the stage for a larger multicenter trial designed to study exercise as an adjunct medicine in children with asthma
    corecore